Linear Functions

Tables
- **Constant 1st differences in output (when inputs increase by a constant)**
 - | t (hours) | C(t) (Total cost of repair work ($)) | Δ output 1st Diff. |
 - | 0 | 50 | + $45 |
 - | 1 | 95 | + $45 |
 - | 2 | 140 | + $45 |
 - | 3 | 185 |

Equations
- \(y = f(x) = mx + b \)

Function Equations
- **b** – initial (output) value when input=0 (0, b) is ‘y’-intercept
- **m** – constant rate of change (CRC)
- **m** – slope (steepness & direction of graph)
- \(m = \frac{\text{Change in Outputs}}{\text{Change in Inputs}} = \frac{\Delta y}{\Delta x} = \frac{\text{rise}}{\text{run}} \)
- \(m = \frac{+45}{+1 \text{ hr.}} = 45 \text{ $/hr. (in table above)} \)

Restrictions on Constants
- **m** – none , **b** – none

Exponential Functions

Tables
- **Constant multipliers between outputs (when inputs increase by a constant)**
 - | d # days | N(d) # cells after d days |
 - | 0 | 45,000 \times \frac{2}{3} |
 - | 1 | 30,000 \times \frac{2}{3} |
 - | 2 | 20,000 \times \frac{2}{3} |
 - | 3 | 13,333 \times \frac{2}{3} |

Equations
- \(y = f(x) = a(b)^x \)
- \(y = f(x) = a(1+\textit{r})^x \)

Function Equations
- **a** – initial (output) value when input=0 (0, a) is ‘y’-intercept
- **b** – constant multiplier (or ratio)
- \(b = \frac{\text{Output}}{\text{Previous Output}} \)
- **b** = ratio: output to previous output
- \(r = \text{relative rate of change} \) (growth/decay rate)
- \(b = (1 \pm r) \) when \(r = \text{relative rate of change} \)
- \(b = \frac{2}{3} , \quad r = \frac{1}{3} \) (in table above)

Restrictions on Constants
- **a** ≠ 0, **b > 0, a > 0 in real world

Quadratic Functions

Tables
- **Constant 2nd differences in output (when inputs increase by a constant)**
 - | S (feet) | A(s) (sq ft) |
 - | 0 | 0 |
 - | 1 | 1 |
 - | 2 | 4 |
 - | 3 | 9 |
 - | 4 | 16 |
 - | 5 | 25 |

Equations
- \(y = f(x) = ax^2 + bx + c \)

Function Equations
- **c** – initial (output) value when input=0 (0, c) is ‘y’-intercept

The meanings of **a** and **b** depend on the situation and are more involved than we will address in this class.

In projectile motion functions, **a** is half of the acceleration due to gravity and **b** is the initial vertical velocity. EX: \(h(t) = -16t^2 + 30t + 5 \)
<table>
<thead>
<tr>
<th>Linear Functions</th>
<th>Exponential Functions</th>
<th>Quadratic Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rates</td>
<td>Rates</td>
<td>N/A</td>
</tr>
<tr>
<td>Linear versus Exponential</td>
<td>Linear versus Exponential</td>
<td></td>
</tr>
<tr>
<td>m = Constant Rate of Change (CRC) changes by a constant quantity which must include units.</td>
<td>r = Constant Relative Rate of Growth/Decay is a constant fractional (or percent) change relative to the previous amount. The fractional change is not a quantity and therefore unitless.</td>
<td></td>
</tr>
<tr>
<td>EX: The population of a town was 10,000 in 2010 and grew by 200 people per year. m = CRC = +200 people per year The pop. changes by the same quantity – 200 people each year. P(t) = 10,000 + 200t</td>
<td>EX: The population of a town was 10,000 in 2010 and grew by 2% (or 1/50) each year. r = +2% = 1/50 of previous year’s pop. per year The population changes by the same fraction but it’s the same fraction of a different amount ea. yr., so the amount of change is different each yr. P(t) = 10,000(1 + 0.02)^t = 10,000(1.02)^t</td>
<td></td>
</tr>
<tr>
<td>Graphs</td>
<td>Graphs</td>
<td></td>
</tr>
<tr>
<td>Shape & Direction</td>
<td>Shape & Direction</td>
<td></td>
</tr>
<tr>
<td>Straight Lines - including horizontal lines (constant)</td>
<td>Asymptotic, Always above x-axis (y > 0) Asymptote – line the graph gets closer and closer to without touching or crossing</td>
<td>Parabolas – special U-shapes - have focus point (not on graph) that make them useful for satellite dishes, solar collectors, and headlights</td>
</tr>
<tr>
<td>Increasing (linear growth) m > 0 (pos.)</td>
<td>Increasing (exponential growth) b > 1, (b = (1 + r)) x-axis is an asymptote</td>
<td>Opens UP (a > 0) (pos.) Vertex is a MIN</td>
</tr>
<tr>
<td>Decreasing (linear decay) m < 0 (neg.)</td>
<td>(b = (1 - r))</td>
<td>Opens DOWN (a < 0) (neg.) Vertex is a MAX</td>
</tr>
<tr>
<td>Constant (output always same) m = 0 (horizontal line)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-function m undefined (vertical line)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Linear Functions

<table>
<thead>
<tr>
<th>y-intercept</th>
<th>y-intercept: $f(0) = m(0) + b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = 0$</td>
<td>$f(0) = 0 + b = b$</td>
</tr>
<tr>
<td>$(0, b)$</td>
<td>b is the initial value</td>
</tr>
</tbody>
</table>

- Functions can have ONE y-intercept at most.

<table>
<thead>
<tr>
<th>x-intercept(s)</th>
<th>x-intercept(s): $0 = mx + b$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>solve to find the x value</td>
</tr>
</tbody>
</table>

- Non-Constant Lines have 1 x-int.
- Constant Lines ($y = #)$ have NO x-int.

Exponential Functions

<table>
<thead>
<tr>
<th>y-intercept:</th>
<th>y-intercept: $f(0) = a(b)^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(0) = a \cdot 1 = a$</td>
<td></td>
</tr>
<tr>
<td>$(0, a)$</td>
<td>a is the initial value</td>
</tr>
</tbody>
</table>

- Exponential Growth/Decay functions DO NOT HAVE x-intercepts.

Quadratic Functions

<table>
<thead>
<tr>
<th>y-intercept:</th>
<th>y-intercept: $f(0) = a(0)^2 + b(0) + c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(0) = 0 + 0 + c = c$</td>
<td></td>
</tr>
<tr>
<td>$(0, c)$</td>
<td>c is the initial value</td>
</tr>
</tbody>
</table>

- Functions can have multiple x-int. or none at all.

Vertex

- Quadratics ONLY

<table>
<thead>
<tr>
<th>Vertex a MINIMUM point</th>
<th>Vertex a MINIMUM point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowest point on parabola</td>
<td>Least output value</td>
</tr>
<tr>
<td>OPENS UP, $a > 0$</td>
<td></td>
</tr>
</tbody>
</table>

- Vertex a MAXIMUM point

<table>
<thead>
<tr>
<th>Vertex a MAXIMUM point</th>
<th>Vertex a MAXIMUM point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest point on parabola</td>
<td>Greatest output value</td>
</tr>
<tr>
<td>OPENS DOWN, $a < 0$</td>
<td></td>
</tr>
</tbody>
</table>

To find vertex: (x, y)

1. **1st x-coordinate:** $x = \frac{-b}{2a}$
2. **2nd y-coordinate:** ‘plug in’ the x-value

- **evaluate** function equation at x value

\[y = a \left(\frac{-b}{2a} \right)^2 + b \left(\frac{-b}{2a} \right) + c \]
Solving Equations

Linear Equations

Variable highest power 1 (1st degree)

5y + 46 – 3y = 10 + 14y
- Simplify each side - Combine like terms.

5y + 46 = 10 + 14y
2y + 46 = 10 + 14y
- Move all variable terms to one side and move all constant terms to the other side.

2y + 46 = 10 + 14y
-2y - 10 = -10 - 2y
36 = 12y
- Multiply/Divide B.S. by coefficient of variable to solve for final value of variable.

36 = 12y
12 12
3 = 1y = y

Check:
5(3) + 46 – 3(3) = 10 + 14(3)
15 + 46 = 10 + 42
15 + 46 – 9 = 10 + 42
52 = 52

Exponential Equations

Variable is IN the exponent.

900 = 60(1.2)^t
- Divide B.S. to Isolate the Exponential Term (base with its variable exponent).

900 = 60(1.2)^t
60 60
15 = 1(1.2)^t
15 = (1.2)^t
- Use logarithms to solve for the variable exponent.

t = \log_{1.2}(15) = \frac{\log(15)}{\log(1.2)}
\approx 14.85

Check:
900 = 60(1.2)^{14.85}
900 = 60(14.99)
900 = 899.4

Quadratic Equations

Variable highest power 2 (2nd degree)

-6x^2 + 9x + 8x^2 = 3x^2 + 5x – 12
- Simplify each side - Combine like terms.

-6x^2 + 9x + 8x^2 = 3x^2 + 5x – 12
9x + 2x^2 = 3x^2 + 5x – 12
- Move ALL terms to one side, in other words, set the equation = 0.

0 = x^2 – 4x – 12

Now find a, b, c for the quadratic in standard form (=0) and use the Quadratic Formula to solve.

a = 1, b = -4, c = -12

x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(-12)}}{2(1)}
= \frac{4 + \sqrt{16 + 48}}{2} = \frac{4 + \sqrt{64}}{2} = \frac{4 + 8}{2}
= \frac{12}{2} = 6
or x = \frac{4 - 8}{2} = -2

Check:
-6(6)^2 + 9(6) + 8(6)^2 = 3(6)^2 + 5(6) – 12
-216 + 54 + 288 = 108 + 30 – 12
126 = 126

-6(-2)^2 +9(-2) +8(-2)^2 = 3(-2)^2 +5(-2) – 12
-24 – 18 + 32 = 12 – 10 – 12
-10 = -10

Exponential Equations

900 = 60(1.2)^t
- Divide B.S. to Isolate the Exponential Term (base with its variable exponent).

900 = 60(1.2)^t
60 60
15 = 1(1.2)^t
15 = (1.2)^t
- Use logarithms to solve for the variable exponent.

t = \log_{1.2}(15) = \frac{\log(15)}{\log(1.2)}
\approx 14.85

Check:
900 = 60(1.2)^{14.85}
900 = 60(14.99)
900 = 899.4

Quadratic Equations

-6x^2 + 9x + 8x^2 = 3x^2 + 5x – 12
- Simplify each side - Combine like terms.

-6x^2 + 9x + 8x^2 = 3x^2 + 5x – 12
9x + 2x^2 = 3x^2 + 5x – 12
- Move ALL terms to one side, in other words, set the equation = 0.

0 = x^2 – 4x – 12

Now find a, b, c for the quadratic in standard form (=0) and use the Quadratic Formula to solve.

a = 1, b = -4, c = -12

x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(-12)}}{2(1)}
= \frac{4 + \sqrt{16 + 48}}{2} = \frac{4 + \sqrt{64}}{2} = \frac{4 + 8}{2}
= \frac{12}{2} = 6
or x = \frac{4 - 8}{2} = -2

Check:
-6(6)^2 + 9(6) + 8(6)^2 = 3(6)^2 + 5(6) – 12
-216 + 54 + 288 = 108 + 30 – 12
126 = 126

-6(-2)^2 +9(-2) +8(-2)^2 = 3(-2)^2 +5(-2) – 12
-24 – 18 + 32 = 12 – 10 – 12
-10 = -10