COURSE SYLLABUS

Course Title: Digital Circuits and Logic
Department: STEAM
Curriculum: Computer Information Systems
Course Code: CST*145
Course Type: X
Prerequisites:
- C- or better in Intermediate Algebra (MAT*137) or higher, AND Introduction to Computers (CSC*101) or permission of Program Coordinator

Course Descriptors:
Make certain that the course descriptors are consistent with college and Board of Trustees policies, and the current course numbering system.

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Elective Type</th>
<th>Credit Hours</th>
<th>Developmental</th>
<th>Lecture</th>
<th>Clinical</th>
<th>Lab</th>
<th>Studio</th>
<th>Other</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Clinical</td>
<td>G</td>
<td>4</td>
<td>no</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Contact Hours:

- **Class Maximum:** 24
- **Semesters Offered:** F

Course Description:
A study of the elements of digital logic design, digital circuits, and the fundamentals of a modern digital system. Topics include binary number systems and data representation, Boolean algebra, analysis and design of combinational and sequential logic circuits, basic computer components, processor instruction set and assembly language. Logic design exercises and simulations are used to provide practical experience.

Topical Outline:
- 1. Digital Systems and Number System
- 2. Boolean algebra and Logic Gates
- 3. Gate-level minimization & combinational logic
- 4. Synchronous sequential logic
- 5. Registers & counters
- 6. Memory & programmable logic
- 7. RAM, DRAM, ROM, EPROM and EEPROM
- 8. Assemble, link and run an Assembler program

Date submitted: 02/10/2020
(AAC: 20-11)
8. Lab projects:
 A. Microcomputer Components
 B. Familiarization with equipment and safety
 C. Combinational Logic
 D. Decoder and Multiplexer
 E. Half Adder and Full Adder
 F. Flip Flops
 G. Shift Register
 H. Binary Counter
 I. Arithmetic Logic Unit
 J. Control unit

Upon successful completion of this course, the student will be able to do the following:

1. Learn number systems
2. Learn Boolean logic, theorems, logic gates and Karnaugh Maps
3. Design combinational logic such as Multiplexer, Decoder, Adder and Subtractor
4. Analyze combinational circuits
5. Analyze and design sequential circuits
6. Describe the function of microcomputer’s components
7. Learn characteristics of RAM, DRAM, ROM, EPROM and EEPROM
8. Perform experiments using breadboard and/or emulators such as Logic Works or Logisim or Micromedia Logic. NOTE: Micromedia Logic is an open source product. It allows users to begin with simple gates and work their way up to larger components, such as memory and ALU, which are included as devices in the software.
9. Learn processor instructions including data transfer, arithmetic instructions, loops and conditional jumps
10. Assemble, link and run an assembler program
11. Learn different addressing modes

PROGRAM: (Numbering reflects Program Outcomes as they appear in the college catalog)

None

GENERAL EDUCATION: (Numbering reflects General Education Outcomes as they appear in the college catalog)

1. **Critical Analysis/Logical Thinking** - Students will be able to organize, interpret, and evaluate evidence and ideas within and across disciplines; draw reasoned inferences and defensible conclusions; and solve problems and make decisions based on analytical processes.

 Demonstrates: Identifies the issue(s); formulates an argument; explains and analyzes relationships clearly; draws reasonable inferences and conclusions that are logical and defensible; provides support by evaluating credible sources of evidence necessary to justify conclusions.

 Does Not Demonstrate: Identifies few or no issues; formulates an argument without significant focus; provides an unclear explanation of analysis and relationships; draws few reasonable inferences and conclusions that are illogical and indefensible; provides little to no support using credible sources of evidence necessary to justify conclusions.

2. **Quantitative Reasoning** - Students will learn to recognize, understand, and use the quantitative elements they encounter in various aspects of their lives. Students will develop a habit of mind that uses quantitative skills to solve problems and make informed decisions.

 Demonstrates: Interprets numerical information and applies sufficient laws of logic and mathematics to solve problems using numbers, symbols, graphs and/or descriptions.

 Does Not Demonstrate: Misinterprets numerical information or insufficiently applies laws of logic and mathematics to solve problems using numbers, symbols, graphs and/or descriptions.
9. **Scientific Knowledge** - Students will gain a broad base of scientific knowledge and methodologies in the natural sciences. This will enable them to develop scientific literacy, the knowledge and understanding of scientific concepts and processes essential for personal decision making and understanding scientific issues.

 Demonstrates: Consistently recalls and correctly applies discipline-specific terms, relevant theories, laws, and concepts to analyze and explain scientific information.

 Does Not Demonstrate: Inconsistently recalls or incorrectly applies discipline-specific terms, relevant theories, laws, and concepts to analyze or explain scientific information.

10. **Scientific Reasoning** - Students will become familiar with science as a method of inquiry. Students will develop a habit of mind that uses quantitative skills to solve problems and make informed decisions.

 Demonstrates: Identifies and successfully executes components of the scientific method (hypothesis, procedure, observations, data analysis, and conclusions) to investigate real-world phenomena.

 Does Not Demonstrate: Misidentifies or poorly executes components of the scientific method (hypothesis, procedure, observations, data analysis, or conclusions) to investigate real-world phenomena.

Evaluation:
List how the above outcomes will be assessed.

<table>
<thead>
<tr>
<th>Assessment will be based on the following criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Written examinations to demonstrate of terminology, concepts and skill</td>
</tr>
<tr>
<td>2. Lab Projects</td>
</tr>
<tr>
<td>3. Quizzes</td>
</tr>
</tbody>
</table>

Instructional Resources:
List library (e.g. books, journals, online resources), technological (e.g. Smartboard, software), and other resources (e.g. equipment, supplies, facilities) required and desired to teach this course.

- Required:
 - Computer lab
 - Computers with updated version of Logisim, Logisim-Evolution, as a digital circuit design simulation program

Textbook(s)
Current textbook will be selected at the start of semester